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ABSTRACT 
This paper summarizes our work adapting a recursive 

digital resonator for use on sixteen-bit fixed-point hardware. 
Our modified oscillator is a two-pole filter that maintains 
frequency precision at  a cost of two additional operations 
per filter sample. The new filter’s error properties are ex- 
pressly matched to use in the range of frequencies relevant 
to additive synthesis of digital audio and sinusoidal mod- 
elling of speech in order to minimize the additional com- 
putational overhead. We present the algorithm, an error 
analysis, a performance analysis, and measurements of an 
implementation on a fixed-point vector microprocessor sys- 
tem. 

1. INTRODUCTION 

There are many benefits to the use of additive synthesis for 
sound production in computer music applications, and anal- 
ogously, in sinusoidal modelling of speech. These include ex- 
pressive musical control over line timbral distinctions, per- 
ceptually relevant parameterizations, sample rate indepen- 
dence of timbre description, availability of many analysis 
techniques, high control bandwidth, and multiple dimen- 
sions for resource allocation/optimization [I]. Its use also 
leverages existing tools and structural manipulation tech- 
niques for the domain [2, 31. The challenge of the additive 
technique lies in its appetite for large numbers of separately 
controllable sinusoidal partials. 

Use of the sinusoidal additive technique requires two 
key decisions: which hardware architecture to use (general 
purpose, custom-designed ASIC, DSPs, etc.), and which 
sinusoid generation algorithm to use on that architecture. 
For the former, one promising avenue is the use of digi- 
tal signal processors or vector (or “multimedia”) processors 
as a natural fit to the data type and associated computa- 
tional demands. Unfortunately, such architectures do not 
always support full-range (i.e., floating-point) arithmetic; 
fixed-pint may be all that is provided. Assuming the de- 
cision is made to target such an architecture, the second 
question becomes that of determining which algorithm to 
use given this constraint. 

A number of sinusoidal partial production techniques 
have been reported in the literature. They all tend to fall 
into one of three classes: those that implement recursive 
filters, those using table-lookup, or those that work in the 
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transform-domain using techniques such as the inverse fast 
fourier transform [4]. Recursive oscillators may be preferred 
over other approaches for one or more reasons: the inherent 
fine-grain exposure of data parallelism, the f a r  more limited 
demand on the memory system compared to table-lookups, 
the lower induced latency than with a transform-domain ap- 
proach, the latency flexibility, and/or the attainable phase 
accuracy. 

This paper summarizes our developments for recursive 
oscillator generation on reduced-precision arithmetic hard- 
ware. We adapt a recursive digital resonator for use on 
fixed-point hardware, modifying the oscillating filter to main- 
tain greatly enhanced frequency precision at the cost of two 
additional operations per filter sample. The new filter’s er- 
ror properties are expressly tailored for use in the range of 
frequencies relevant to digital audio, as opposed to general- 
purpose applications, in order to minimize computational 
overhead required to obtain the additional accuracy. We 
present the algorithm, an error analysis, a performance 
analysis, and measurements of an implementation of the 
algorithm on a fixed-point vector microprocessor system. 

2. METHOD DESCRIPTION 

The particular recursive form we use is a constant-gain dig- 
ital resonator [5, 61. Requiring only a single multiply, it is 
computationally less expensive than the waveguide oscilla- 
tor [7] or the modified coupled form [SI. 

The challenge of using moderate-precision arithmetic 
units and numeric representations for recursive oscillators 
lies in 

addressing the error accumulation inherent in recur- 
sive methods (i.e., quantization-induced noise effects), 
and 
providing sufficient frequency coefficient resolution. 

Our approach to these challenges is two-fold: keep individ- 
ual oscillators short-lived via an “overlap-add” approach to  
exploit short-term fidelity [9], and modify the recursion cal- 
culation to increase frequency accuracy. For this paper we 
focus on the latter technique. 

The general form of the digital resonator, with no damp- 
ing or initialization impulse function, is: 
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where fs is the sampling frequency and f E (0, fs /2)  is the 
(constant) desired frequency of oscillation. 

To implement this equation using only sixteen-bit fixed- 
point multiplies, we needed to (1) manage the fixed-point 
units with enough precision to maintain accuracy across 
the entire audible frequency range, while (2) taking special 
care to provide sufficient frequency coefficient resolution to 
account for human ability to distinguish subtle differences 
in low frequencies. Accuracy must be maintained across 
a broader range and with more precision for low-frequency 
partials than a simple sixteen-bit fixed-point representation 
supplies. Additionally, because the frequency coefficient 
multiplication is in the critical path, we want to minimize 
the computational ovei-head of the changes. 

To quantify the issue, we use the experimentally de- 
termined just-noticeable difference (JND) psychoacoustic 
curve for frequency differentiation [lo]. This curve can be 
used to reliably estimate the precision required for an en- 
coding of the frequency coefficient so that inaccuracies re- 
main below the approximate threshold of human differenti- 
ation. Using the JND curve, we can specify a minimum per- 
ceptible musical interval and then calculate the resolution 
necessary to maintain relative frequency accuracy. Doing so 
indicates that the low-frequency components require more 
precision than higher ones - which is intuitive, since we are 
calculating relative accuracy. Thus, to minimize perceived 
error, we remap the frequency coefficient representations in 
two ways: we employ an exponent internally to emulate 
floating-point range extension, and invert the bit represen- 
tation to bias accuracy toward low frequencies rather than 
high frequencies. These changes require two new operations 
per filter sample: an add with constant shift and a variable 
shift. (The constant shift and mantissa multiply can be 
fused in some fixed-point arithmetic pipelines as a single 
operation, thereby requiring only one cycle.) 

To understand the modifications to the filter, recall the 
original recurrence relation for our sine wave generator (with 
w = T). At low frequency, the coefficient 2 cos(w) is very 
close to two, and so in a floating-point format, lower fre- 
quencies synthesized using the formula will have less accu- 
racy than higher-frequency oscillators due to the need to 
explicitly represent the leading ones (the high-order bits) 
of 2cos(w). Numbers closer to zero benefit from the im- 
plicit encoding of leading zeros via a higher exponent. In 
other words, larger values require bits with larger “signifi- 
cance” (absolute value), forcing the least significant bits in 
the same word to also have higher significance, thus forcing 
higher worst-case quantization error. We can more effec- 
tively use the bits of the mantissa by reversing this rela- 
tionship, recasting the equation as: 

~n = 2 C O S ( W ) X ~ - ~  - xn-2 

~n = 2(1- E / ~ ) x ~ - I  - xn-2 (1) 
xn = 22,-1 - ~ ~ n - 1  - ~ n - 2  

i.e., where cosw = (1 - € / a ) .  
To represent e ,  an unsigned sixteen-bit mantissa m is 

combined with an unsigned exponent e,  biased so that the 
actual represented value is L = 22-em. Thus, the exponent 
is also the right shift amount necessary to correct a 16b x 16b 
+ 32b multiply with L as an operand. The two in the 
exponent allows L to range from 0 to 4 when m is interpreted 

as a fractional amount and f ranges between zero and the 
Nyquist frequency. 

What is achieved with this remapping of number repre- 
sentation is the ability to represent lower frequencies with 
more significant bits by mapping higher frequencies to rep- 
resentations with less significant digits. In particular, as 
2 cos(2xf/fs) varies from -2 to 2, we define L to vary from 4 
to 0. Smaller frequency values produce smaller values of E ,  

helping to satisfy our asymmetric accuracy requirements. 

3. ERROR ANALYSIS 

3.1. Relative Error 

Relative frequency discrimination is based on the ratio of 
adjacent frequencies. To determine worst-case relative er- 
ror, We wish to determine the maximum ratio between two 
adjacent e values. Call these frequency coefficients €1 and 
€ 2 ,  and their corresponding frequencies f l  and fz. From the 
definition of w and the equation cos w = (1 - e / 2 ) ,  

_ -  f l  - cos-’(l - € , / a )  
f2  cos-’(1 - 4 2 )  

The maximum value for L that we can represent, which 
is 11.11111111111111~, sets the highest-valued least signif- 
icant bit of any number in the range to 2-14. We have 
defined the exponent e to be zero for this location of the 
binary point, and by design, numbers with this exponent 
are maintained with the least accuracy. This value coin- 
cides with the maximum representable frequency. Because 
humans perceive pitch as the log of frequency, this achieves 
a good match of the number representation to the asym- 
metric accuracy requirements. 

Taking any two adjacent numbers in the range, we can 
compute f l / f i  with Eq. 2. Evaluating this ratio for all pos- 
sible adjacent pairs of epsilon values allows us to determine 
that it is maximized for €1 = 4 - 2-14 and LZ = 4 - 2-13, 
where f l /  fi M 1.0010337. This ratio is lower than the min- 
imum frequency ratio humans are able to differentiate, a 
pitch difference of approximately four to five cents (about 
1/25-1/20 of a semitone) [lo]. The maximum error of our 
algorithm is actually less than two cents: ““fi w 1.001156. 

3.2. Absolute error 

Two tones that are meant to have an exact ratio in their 
frequencies may instead generate beat frequencies due to 
frequency quantization. This effect, caused by absolute er- 
ror, should be minimized. 

Worst-case absolute error due to epsilon quantization 
is shown in Figure 1, which contains both a side-by-side 
comparison below 2000 Hz and a detail for the modified 
form. As expected, the recast filter maintains more precise 
absolute frequency than the original form. 

Fundamentally, more than 16 bits of fractional coeffi- 
cient are necessary to obtain 1 Hz absolute precision across 
the audible spectrum [ l l ] .  Our method maintains reason- 
able error bounds in sixteen bits of mantissa by scaling these 
bits with the exponent. 
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Figure 1: Worst-case absolute error due to frequency coef- 
ficient quantization. Top: comparison of original and mod- 
ified. Bottom: modified form detail. 

3.3. R o u n d i n g  error 

At each iteration of the recursive form, a small error is in- 
troduced due to rounding of the multiply result. Due to 
the recursion, this error isn't corrected until reinitializa- 
tion of the state variables. Possible effects of this include 
degradation of the signal-to-noise ratio, degradation of the 
long-term phase accuracy, and a lack of amplitude stability 
- all of which can cause audible artifacts. 

As has been illustrated elsewhere [SI, this can be cor- 
rected via additional computation. To avoid this, we ex- 
ploit our ability to reinitialize the computation at  overlap- 
add frame boundaries, thereby allowing use of a non-self- 
correcting (but higher-performance) oscillator form. 

4. FAST INITIALIZATION 

The resonator can be initialized to a desired frequency and 
phase at  sample zo by properly choosing the two state vari- 
ables x-2 and 2 - 1  using function evaluations in place of 
an initialization forcing function. The lookup values for a 
sinusoid with phase p and frequency f are: 

These initializations must be accurate down to the low- 
order bits in a 32-bit fixed point representation, with the bi- 
nary point set between the third and fourth bit positions in 
order to support a phase in the range [0,2rr]. Additionally, 
we need to compute the frequency coefficient 2 - 2cos(w) 
to 32-bit accuracy. 

We implement these initial evaluations by rewriting: 

x-1 = sin@- w )  
= sin(p) COS(W) - CO+) sin(w) 

x-2 = sin(p-2w) 
= sin(p) cos(2w) - cos(p) sin(2w) 

2 cos(w) sin(p - w )  - sin(p) 
... - - 

= 
= 2 cos(w)x-~ - sin(p) 

This recasting allows us to require only the computation of 
sin(p), cos(p), sin(w), and cos(w). 

sin(theta: 

theta (32 bit tixed point) -- 
alpha beta alpha 

cos(theta) 

Figure 2: Calculating both sin(6') and cos(6') with a hybrid 
technique: table-lookup for a and Taylor expansion for P 
combine to give an accurate 32-bit result efficiently. 

It may seem that this has actually increased the amount 
of work we need to perform because there are now four 
trigonometric evaluations rather than three (two initializa- 
tion sines plus the cosine in the recursive form). However, 
this approach turns out to be more efficient by allowing for 
the judicious sharing of intermediate values in a tandem 
sine and cosine generation procedure. The tandem subrou- 
tine returns both sin(6') and cos(6') for 6' E [ 0 , 2 ~ ]  to full 
32-bit fixed-point precision using a hybrid technique com- 
bining table-lookup and Taylor expansion. This keeps both 
the table size manageable (2048 entries of 32 bits) and the 
number of terms in the Taylor expansions small (two). It is 
implemented by separating 6' into cr and p as shown in Fig- 
ure 2; CY is the high-order 11 bits of 8, and p the remaining 
low-order bits. cr is used in an exact (to one LSB) 11-bit + 
32-bit table-lookups, while (guaranteed small) P is used in 
Taylor expansions: 

P cos@) M 1 - - 2 and sin(j3) z/3 

The accuracy of expanding each to only two terms is guar- 
anteed by limiting the size of p to only the low-order 21  
bits of 6': the sum of the remaining terms in each expansion 
sequence, for all P ,  is less than the LSB. Finally, cy and p 
are combined using the relationships: 

sin(cr + p)  = sin(cr) cos@) + cos(cr) sin@) 
cos(cu + p)  = COS((.) CO@) - sin(a) sin@) 

5. RELATED WORK 

A similar approach has been used on the T I  TMS32010 
DSP [12], where they suggest using 32-bit multiplies (using 
three 16-bit stages) and modifying the program to hard- 
code shift values. The latter technique in inappropriate to 
vector architectures and the former unnecessary to achieve 
the accuracy needed for audio. Similarly, extensive work 
on variable representations for direct-form oscillators and 
their associated error properties has been reported in the 



literature [13, 141, but. none specifically matched to the im- 
portant and practical problem domain of additive synthesis 
of audio or the equivalent usage in sinusoidal modelling of 
speech. 

6. IMPLEMENTATION AND PERFORMANCE 

We implemented our approach on the SPERT neural net- 
work and signal processing accelerator board [15]. The 
SPERT houses a TO chip [16], which tightly couples a general- 
purpose scalar MIPS core to a high-performance vector co- 
processor (comprising two vector arithmetic units and a vec- 
tor load/store unit). TO is representative of digital signal 
processing architectures in its use of fixed-point arithmetic. 

Computing summations of oscillators for additive syn- 
thesis with an overlap-add approach using Eq. 1 and our 
pseudo-floating-point format, we need four multiplies, two 
variable shifts, two fused (constant) shifts and adds, and 
two regular adds: 

x, = 2Zn-1 - €Zn-l + 2,-2 
An = A,-i + AA 

out, = out, + A, x 2, 

We use 32-bit fixed-point intermediates for the ampli- 
tude, the amplitude delta, and the state variables. To 
satisfy alignment requirements, constant shifts are needed 
to convert them from 32-bit to 16-bit prior to a multiply. 
This requires an additional three arithmetic operations be- 
yond those above (only three because e’s mantissa is al- 
ready 16-bit). One of these shifts can be obtained from a 
prior iteration via software pipelining. This leads to a to- 
tal of 9; vector arithmetic operations per sinusoid when 
unrolled n times. Unrolling four times due to trade-offs in 
register file pressure on TO, we achieve the following best- 

2 sinusoids 9f ops 4 cycles case performance: x -  
partial sine 2 vector ops 

vector 37 cycles 
j -(- 1.15)- 32 elements 32 partial 

Thus, for our SPERT board performing 8 operations per 
cycle (peak) with a 40 MHz clock rate and at a 44.1 kHz 
sampling rate, a theoretical maximum of 768 partials can 
be achieved in real time excluding all overhead. The cur- 
rent implementation on the prototype accelerator, includ- 
ing overhead, supports up to 608 simultaneous real-time 
partials with frame lengths of 5.8 ms or greater, or about 
1.5 cycles per partial per sample. 

7. CONCLUSIONS 

We have summarized our work adapting a recursive digital 
resonator for use on sixteen-bit fixed-point hardware with 
error properties expressly matched for use in the range of 
frequencies relevant to additive synthesis of digital audio or 
sinusoidal modeling of speech. The new technique allows 
for reliable computation of frequencies impossible to han- 
dle with the direct form, while keeping additional frequency 
precision costs down to only two additional operations per 
filter sample. We presented the algorithm, an error analysis, 
a performance analysis, and measurements of an implemen- 
tation on a fixed-point vector microprocessor system. More 
detailed information is available elsewhere [17]. 
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