
An Open Architecture for Real-Time

Audio Processing Software

Amar Chaudhary Adrian Freed Matthew Wright
Center For New Music and Audio Technologies

University of California, Berkeley, CA 94709, USA
{amar,adrian,matt}@cnmat.berkeley.edu

Abstract
OSW, or “Open Sound World,” allows development of audio applications us-

ing patching, C++, high-level specifications and scripting. In OSW, components
called “transforms” are dynamically configured into larger units called “patches.”
New components can be expressed using familiar mathematical definitions with-
out deep knowledge of C++. High-level specifications of transforms are created
using the “Externalizer,” and are compiled and loaded into a running OSW envi-
ronment. The data used by transforms can have any valid C++ type. OSW uses a
reactive real-time scheduler that safely and efficiently handles multiple processors,
time sources and synchronous dataflows.

1 Introduction

We introduce “Open Sound World” (OSW), a scalable, extensible object-oriented lan-
guage that allows sound designers and musicians to process sound in response to ex-
pressive real-time control.

Real-time software synthesis packages such as Max/MSP [1] and FTS are designed
using a simple software component model. Users specify the signal and event flow
through instantiations of high-level components, which are themselves created in the
C programming language [2] and loaded on demand. This scheme works well until a
new component function is needed. The component programmer is exposed to low-level
efficiency and scheduling concerns and must express ideas in a low-level language (C)
using predetermined, constrained data structures for inter-component communication.
Developing components is difficult even for experienced programmers. Pd [3] introduced
hierarchical, user-definable data structures for components. OSW builds on these ideas
with an extensible object-oriented model which allows users to develop at multiple levels
including visual patching, high-level C++ and Tcl scripts.

OSW includes the “Externalizer,” a tool that allows users to view and extend
the functionality of existing components or specify entirely new components as high-
level specifications. The Externalizer automatically converts a specification into high-
performance C++ code. The “transform” code is then compiled and can be loaded into

1

a running OSW environment. Thus, new transforms can be specified and tested in vivo
without having to stop and switch between development and testing phases.

The real-time scheduler used by OSW supports symmetric multiprocessor comput-
ers, as well as configurations with multiple audio devices and time sources. Fine-grain
synchronization primitives (i.e., locks) are included to protect against non-deterministic
behavior that arises in such parallel systems without severely compromising perfor-
mance.

The remainder of this paper is organized as follows: Section 2 describes the basic
features of programming in OSW; section 3 discusses the use of C++ and Tcl in OSW
and introduces the Externalizer; section 4 explores timing and scheduling issues; section
5 describes the use of OSW in networked environments and section 6 concludes the
paper.

2 OSW Basics

OSW is a “dataflow programming language.” In dataflow programming, users connect
primitive components together to produce networks. Each component accepts data from
incoming connections and sends processed results via outgoing connections. OSW is also
an “object-oriented” language, in that components are instances of classes that specify
their structure and behavior.

OSW employs a visual programming environment that allows users to instantiate
and connect graphical representations of the components. Examples of other visual
dataflow languages include Ptolemy for signal processing [4], and Max/MSP and Pd for
computer music applications. The look and feel of OSW is familiar to anyone who has
programmed in these languages.

This section is not intended as a tutorial for OSW, but rather a presentation of its
features. Detailed documentation and tutorials for OSW can be obtained elsewhere [5].

2.1 Transforms and Patches

The primitive components in OSW are called transforms. Transforms accept data via
inlets, and produce results in outlets. Figure 1 illustrates a transform that generates
a sine wave (i.e., pure tone) as a function of time and frequency. This transform has
two inlets, timeIn and frequency, for accepting new time and frequency values, and one
outlet, samplesOut, to which newly generated samples are sent. A transform can range
in complexity from adding two numbers together to modeling a bank of hundreds of
resonant filters. Because processing is more efficient within a transform than between
transforms, more complex transforms are often favored.

Users instantiate new transforms by specifying the name of a transform class (e.g.,
Sinewave) followed by a name of the instance and arguments for initializing inlets or
other attributes of the transform. An argument is the attribute name prefixed with a
dash “-” character and followed by the desired value. For example, if we wanted to
instantiate the Sinewave in figure 1 with a default pitch of Concert A, we might say
“Sinewave sinewave1 -frequency 440.0”.

2

Transforms can be connected to form larger networks called patches, as illustrated in
figure 2. Patches are themselves transforms, and can be instantiated and incorporated
into other patches.

Connections in OSW are “strongly typed,” meaning that an outlet can only be
connected to an inlet that accepts data of its type. Moreover, each outlet is connected
to at most one inlet. In order to connect an outlet to multiple inlets, an explicit FanOut
transform must be used. Likewise, inlets accept only one connection. A FanIn transform
is included to allow an inlet to accept data from any connected outlet. Incoming data
from multiple outlets can also be combined using other operators, such as addition, by
including an appropriate transform.

By default, the visual appearance of a transform is a box containing the text used
to instantiate it. As exemplified by figure 2, many transforms override this default
appearance, displaying an icon or providing GUI controls for user input.

Transforms are intended to be self-documenting. Each transform includes a brief
description of itself, a link to full documentation in HTML or XML format [6], and (like
Max/MSP) a reference to an example patch illustrating the use of the transform. For
Sinewave, the example patch might look like figure 2. Each inlet and outlet also includes
a description of its type and use in its transform. This description is automatically
displayed in the visual programming environment when the user moves the mouse over
an inlet or outlet.

OSW includes a large set of standard transforms for basic event and signal pro-
cessing. A current list of the standard transforms included in OSW can be found at
http://www.cnmat.berkeley.edu/OSW. The set of available transforms can be easily
extended to include more advanced operations.

2.2 Flow of Execution in Patches

The work of transforms is done in activation expressions, code that is executed in re-
sponse to changes in one or more of the transform’s inlets. The result of an activation
expression is usually assigned to one or more outlets of the transform. Whenever an
outlet is assigned a new value, the value is sent to a connected inlet. If the receiving
inlet is active, the transform will execute an activation expression, possibly changing
the value of its outlets. If the receiving inlet is passive, it is assigned the new value but
no further processing occurs.

Consider the multiplication operator shown in figure 3. The left inlet inlet is active,
so changing its value will trigger an activation expression that outputs the product of
the two inlets. The right inlet is passive, so changing its value will not result in any
output, but its new value will be used to compute products in subsequent activations.

2.3 Data Types

OSW provides a set of primitive data types, such as integers, floating-point numbers,
strings, boolean values and lists, as well as several useful data types for music and
signal-processing applications, including samples (as floating-point numbers or integers),

3

frequency-domain spectra, notes, MIDI events and the Sound Description Interchange
Format (SDIF) [7].

Since the data types used by transforms are C++ types (i.e., classes or primitive
scalars), it is relatively straightforward to add new data types to OSW. Of course, new
data types require new transforms to handle them. These issues are discussed in section
3.

2.4 The Name Space

The hierarchy of nested patches has a natural corresponding hierarchical name space.
For example, if the patch illustrated in figure 2 is named sinewaveplayer1, then the full
path name of our sine wave transform is /sinewaveplayer1/sinewave1, and its frequency
inlet is /sinewaveplayer1/sinewave1/frequency. The hierarchical name space is modeled
after the directory structure found in most file systems. Names beginning with a slash
(“/”) are treated as absolute path names, while names that do not begin with a slash
are referenced relative to the current patch. Names beginning with two periods and
a slash (“../”) are referenced relative to the patch that contains the current patch. If
there is no such container patch exists, addresses beginning with (“../”) are undefined.

For example, suppose a user wanted to use a wavetable to generate a sine wave
instead of directly computing the samples, as Sinewave does. The transform WaveTable
generates samples by looking up amplitudes in a table according to phase. WaveTable
requires an argument specifying the name of the table to use. In figure 4, we specify
the table /tables/sine as an absolute path to a default table supplied by OSW. However,
suppose the user has grown weary of listening only to sine waves, and wishes to supply
his or her own table. He or she can add a new Table to the patch, as shown in figure 5,
and replace /tables/sine with the relative path mytable, the name of the newly-created
table.

2.4.1 Get and Set

The transforms Get and Set can be used to query or modify variables by path name.
The variable can be part of a transform (e.g., an inlet or outlet), or a free variable (i.e.,
a variable that is not part of a transform) in a patch, as illustrated in figure 6. In
this example, one patch uses Set to assign a value to free variable, and a second patch
receives the value via a Get transform with an absolute path name to the variable in
the first patch. Note in figure 6 that the free variable is not global, but defined as part
of the patch /source. It can be accessed by a relative path name within /source and an
absolute pathname elsewhere. In order to make a free variable myvariable global (i.e.,
not part of any patch), one would specify the absolute path /myvariable.

Note the special syntax of Get and Set. There is no instance name, and the name
of the variable being accessed must be the first argument. Get also takes an optional
argument, “-order n” that assigns a number to the transform. If more than one Get
accesses the same variable, they output in ascending order according to this number.
(Two such transforms with the same order number output in an indeterminate order.)

4

The use of Get and Set in patches is analogous to the use of goto in structured
programming [8][9]. Their expressive power comes from the fact that they break the
dataflow model, allowing the flow of execution to jump between transforms that are not
connected or even in the same patch. Abusing this feature can make programs very
difficult to understand and debug.

2.5 Packages

The previous section described a hierarchical name space for instances of transforms
and patches. Similarly, transform class names are grouped into name spaces called
packages. A transform that is part of a particular package is specified as package-
Name::transformName. If no package name is specified, a default list of packages is
searched to find the transform class.

Packages are useful for organizing transforms, particularly in environments where
new transforms are being developed or installed. A developer can modify an existing
transform, and place it in a separate package to keep the class name but not interfere with
patches that use the old transform. Likewise, a user can install new sets of transforms
in separate packages according to the individuals or organizations that developed them,
allowing two or more transforms with the same name from different sources to be used
without confusion.

All the standard transforms are in the package osw, but explicit use of the package
name is not necessary, as this package is always on the default list. Transforms that
implement additive synthesis or resonance modeling techniques developed at CNMAT,
for example, are part of the package cnmat, and the transform class for a bank of
resonant filters would be cnmat::Resonators. If a user frequently uses transforms from
the package, the package name can be added to the default list, and the cnmat package
name need not be specified.

2.6 Accessing Hardware Devices

Most users will need to access various hardware devices for audio I/O and controller
input. OSW provides abstractions of the devices themselves, as well as transforms for
communicating with them. For example, an audio output device is required to realize
the sound in each of the examples presented. The DAC transform is the interface at the
patching level to the audio output. DAC requires a parameter specifying the name of
the desired device. In this case, the first channel of the first device, /dac/0/0 was used.
If we wanted to use all the available audio channels for the device, we would have used
/dac/0 and each channel would have been available as a separate inlet to the transform.

OSW supports a variety of input and output devices, including audio hardware,
MIDI ports, Ethernet and serial ports. It can be extended to support additional devices
for expressive control, such as graphics tablets [10].

5

2.7 Type any and Dynamically-Typed Inlets

Some transforms include an outlet of type any. Such outlets can be connected to any
inlet. Every time a new data value is sent from the outlet to the connected inlet, the
type of the data must be checked to ensure that it is compatible with the inlet. If it
not, an error occurs and the data is not processed by the receiving transform. The use
of any is inefficient, and undermines type checking, so it is not widely used. The most
common examples of any are free variables used with Get and Set.

Some transforms include dynamically-typed inlets. Dynamic-typed inlets are assigned
a type at connection time. For example, a binary arithmetic operator, such as the mul-
tiplication operator shown in figure 7, has two dynamically-typed inlets. When the
inlets are connected to outlets of valid arithmetic types (e.g., two integers, or samples
and a floating-point number), the inlets are assigned those types, and the outlet of the
operator is assigned a type according to the operator and the inlet types (e.g., multi-
plying two integers produces an integer, while multiplying samples by a floating-point
number produces samples). If the outlet was already connected to another transform,
the connection is broken. Like any, dynamically-typed inlets allow a single transform to
be used with many different types of data. However, because a dynamically-typed inlet
has the same type as the outlet to which it is connected, no dynamic type-checking is
necessary. Thus, they do not incur the performance penalty associated with any.

2.8 FanOut and FanIn

As stated earlier, an explicit FanOut transform is needed to connect one outlet to many
inlets. Like Get and Set, FanOut does not take an explicit instance name (one is created
automatically), but does take an argument -outputs for the number of outlets. If -outputs
is not specified, a fanout transform with two outputs is created. The single inlet of
FanOut is dynamically-typed. When the inlet is connected, all the outlets of the FanOut
are assigned the new inlet type. The syntax of FanIn is equivalent to FanOut, except
that it takes an argument -inputs to determine the number of inlets. Any input received
by any inlet of FanIn will be output.

2.9 Bundles and Transform Arrays

Users of dataflow languages for signal processing often find themselves making several
copies of the same group of connected transforms. This frequently happens when dealing
with multiple audio channels or multiple voices in a synthesizer. Of course, the copied
transforms can be placed in separate patch and the patch can be instantiated multiple
times. OSW provides an additional abstraction for multiple copies: transform arrays.
The Array transform takes a transform class name, an integer n, an instance name and
arguments for the transform class, and creates a single object containing n copies of
the transform, named name/0 . . . name/(n− 1). The array has inlets and outlets which
have the same names as the original transform but each now must be connected using
a bundle. The bundle data type is an abstraction of busses in audio engineering. It is
used to transmit n data objects of another type over a single connection.

6

Standard connections are converted to and from bundles using the transforms BundleOne,
BundleMany and Unbundle. BundleOne has one inlet and copies incoming values to each
connection in the bundle, while BundleMany includes a separate inlet for each connection
in the bundle, allowing different values to be sent to different transforms in an array.
Unbundle converts a bundle of n connections into n separate standard connections.

Figures 8 and 9 illustrate how transform arrays and bundles can reduce clutter in a
patch that includes three sine waves with independent frequency and amplitude controls.

3 Transform Implementation

Transforms as well as the entire OSW system are implemented using standard C++. By
doing so, we present a unified, object-oriented approach to transforms, patches, devices,
the scheduler, etc. Moreover, compilers can take advantage of C++ optimizations like
inlining across different components of the system. (This would be exceedingly difficult
in a system based on C functions called from separate modules.)

Tcl/Tk [11] is a scripting language and user-interface toolkit that runs on virtually
every modern platform. As such, it is an ideal choice for implementing the visual
programming environment and user-interface transforms (e.g., buttons, sliders, etc.).
Tcl scripts are also used to implement patches.

In addition to describing implementation issues, we hope to motivate the use of these
implementation languages as options for developing high-performance signal-processing
applications in OSW.

3.1 The Externalizer

In most component-based systems, the primitive components are completely opaque to
users. The internals of a component cannot be viewed or modified except by experienced
developers armed with extensive knowledge of a low-level language (such as C), the host
operating system and a specialized toolkit.

OSW provides a graphical tool called the Externalizer that allows users to “peer
under the hood” of a transform and extend its behavior without a deep knowledge of
C++ or low-level efficiency concerns.

The Externalizer presents a transform implementation as a collection of inlets, out-
lets, state variables and activation expressions that a user can view or modify. A state
variable is a transform parameter that does not appear as an inlet. Like inlets and
outlets, state variables are part of the hierarchical namespace and can be queried or
modified using Get and Set transforms.

As described earlier, an activation expression is a piece of C++ code that is executed
when certain inlets or state variables are modified. If an activation depends on more
than one variable, then all the variables must be modified before it will be executed.
An activation can occur immediately, or be delayed for a specified amount of time
before running. An activation expression is specified by the subset of inlets or state
variables that trigger this activation, whether this activation should occur immediately
after the variables are changed or be delayed by a certain amount of time, and the code

7

that should be executed. An activation expression can also be assigned an optional
integer that determines its relative order among all expressions triggered by a particular
variable. The ordering rules are the same as those described for Get transforms.

Consider the following specification of Sinewave:

Sinewave
Generates a pure tone (i.e., sine wave) signal.

Name Type Default
Inlets timeIn Time

frequency float 440.0
Outlets samplesOut Samples

State Variables prevTime Time 0.0
Inherited SampleRate float 44100.0

NumberOfSamples int 128

Activation Expression activation1
Depends on timeIn

Delay none

samplesOut = sin(TWOPI * frequency

* Range(prevTime,timeIn,NumberOfSamples));

prevTime = timeIn;

Whenever a new time value is received via timeIn, the sine function is computed with
frequency frequency over a range of NumberOfSamples values from prevTime and timeIn∗.
More specifically, the Range function creates a vector of interpolated values between
prevTime and timeIn. Computing the sine function over the product of 2π frequency and
this vector yields another vector containing the desired output samples, which are then
sent to samplesOut. The ending time value (i.e., timeIn) will be the starting time value
the next time this expression is evaluated.

The state variables NumberOfSamples and SampleRate are inherited from a more
general class of transforms that share a set of common features. In this case, the more
general class is time-domain transforms that manipulate time-domain samples. Inherited
variables can be used in activation expressions just like other state variables. In most
activation expressions, a new value is assigned to an outlet. Such an assignment is called
an effect. Effects allow users to understand the flow of execution in a transform and the
behavior of patches that incorporate it.

3.1.1 Using the Externalizer

Users can invoke the Externalizer by selecting a transform to examine from a patch.
The specification of the transform class is then displayed. This specification includes
the name of the transform class, its package, a brief description, references to its doc-

∗In practice, the formula used in this activation expression should be replaced with one that does
not cause phase discontinuities when the frequency changes

8

umentation and example patch, any special base classes (e.g., time-domain transform)
and lists of its inlets, outlets, state variables, inherited variables and activation expres-
sions. The user can then select any of these items to call up for detailed information
and make modifications.

Suppose, for example, that a user wishes to make a version of Gain that uses a decibel
(i.e., logarithmic) scale instead of a linear scale. Figure 10 shows the specification of Gain
as presented by the Externalizer, and figures 11 and 12 show the activation expression
before and after the modification, respectively.

When the user finishes modifying a transform specification, it is automatically con-
verted to a C++ class that implements the transform. The C++ code is then compiled
into a dynamic library which can be loaded into OSW and used to instantiate transforms
of the new class.

In order to protect the integrity of the OSW environment, users cannot directly
modify the standard library of transforms. However, most of the standard transforms
include Externalizer specifications that can be copied and then modified (as a new
transform class).

The default policy of the Externalizer is to bundle a copy of the transform speci-
fication along with the dynamic library so that it may be examined and extended by
other users. However, developers of transforms with proprietary code or algorithms can
block this feature. Transforms without accompanying specifications cannot be viewed
or modified except by the original developer.

3.1.2 Adding Data Types

The Externalizer also allows users to define new data types for transform variables. A
new data type consists of a number of named fields, each of which must be a preexisting
OSW data type. A conversion to and from the string data type must be included for
human-readable input and output. The data type specification is then converted to a
C++ struct definition for use in transforms.

3.1.3 More Externalizer Features

Users can provide C++ code or Tcl scripts that override the default appearance and
behavior of the transform in the visual programming environment. Users can also specify
code to be executed when an instance of the transform is created or destroyed (e.g.,
opening and closing files). Additional “private” C++ variables and functions can be
specified and used in activation expressions.

3.2 Transforms in C++

Experienced programmers can bypass the Externalizer and write C++ transform classes
directly. Each transform class is derived from one of the C++ base transform classes
(at present, either Transform or TimeDomainTransform). Each derived class includes
members for its inlets, outlets, state variables and activations, a member function for
each activation and a constructor function that properly instantiates each member.

9

class Sinewave : public TimeDomainTransform {

public:

Inlet<Time> timeIn;

Inlet<float> frequency;

Outlet<Samples> samplesOut;

State<Time> prevTime;

Sinewave (const string &aname, Patch *acontainer,

int argc, char *argv[]) :

TimeDomainTransform(aname,acontainer,argc,argv),

timeIn("timeIn",this,"Evaluate the sine function up to this time"),

frequency("frequency",this,"Frequency of the sine wave"),

samplesOut("samplesOut",this,"Output signal"),

prevTime("prevTime",this,"Previous time value",0.0),

activation1(&samplesIn,TIME_NOW,this,&Sinewave::activation1Expr) {

}

private:

Activation<Sinewave> activation1;

void activation1Expr () {

samplesOut = sin(TWOPI * frequency

* Range(prevTime,timeIn,NumberOfSamples));

prevTime = timeIn;

}

};

Inlets, outlets and state variables are specified using C++ templates. Templates
allow developers to specify a generic version of a class or function that can be used with
different types. In this case, the generic Inlet and Outlet templates implement the
underlying mechanisms for type-safe connections, triggering activation expressions and
self documentation. The developer can then use these mechanisms with any C++ data
type.

The Activation template is an example of a functor, or “functional object” [12].
The functor is created by combining a piece of code (activation1Expr in the example)
with a context (i.e., depends on timeIn, no delay). Because calls to the functor can be
inlined, the code in activation1Expr will be called without the overhead of subroutine
calls.

10

3.2.1 The osw::vector<T> Class

Both Externalizer specifications and C++ transform classes allow users to specify ac-
tivation expressions using intuitive, familiar mathematical definitions instead of hand-
optimized computer code [13]. This is achieved through the use of function and operator
overloading [14] in expressions that use OSW’s vector template class, osw::vector<T>† .
The Samples type is actually a synonym for osw::vector<float>, an optimized vector
of single-precision floating-point numbers.

When a standard arithmetic operator or math function is called with a vector ar-
gument, a composition closure object [12] is created that evaluates the entire expression
for each element in the vector, eliminating the need for temporary storage in complex
arithmetic expressions. Like functors, calls to closure objects are inlined. Consider the
activation expression from Sinewave:

samplesOut = sin(TWOPI*frequency*Range(prevTime,timeIn,NumberOfSamples));

A naive implementation would first create a vector for the range with NumberOfSamples

elements, a temporary vector for the multiplication by TWOPI and frequency and a fi-
nal vector containing the sine of each element from the temporary. The intermediate
allocation wastes time and space, and also breaks standard loop optimizations, such as
unrolling. The composition closure object defines a function that creates only the final
vector. Each element of the final vector is assigned the sine of the multiplication of
TWOPI, Frequency and the corresponding element of the range. The temporary alloca-
tion has been eliminated, and the resulting simple loop can now be further optimized
by the compiler.

The osw::vector<T> class also overrides the standard C++ allocators to implement
a deferred reference-counted memory manager. In this scheme, further allocations are
saved when a vector is simply passed without modification from one variable to another;
its reference count is increased whenever it is assigned to a new variable, and decreased
when it unassigned or a variable goes out of scope. If the reference count decreases
to zero, the vector is deallocated and its memory is returned to a shared pool for use
by other vectors. In order to reduce the overhead of deallocation during sequences of
signal-processing transforms, this task is deferred until a suitable time in the future,
at which point all allocations since the last deferred deallocation are scanned, and all
vectors with a reference count of zero are returned to the share pool. The scheduling of
deferred deallocations is discussed in section 4.4.2.

3.3 Writing Patches and Transforms in Tcl

An OSW patch is implemented as a Tcl script. The script instantiates the transforms,
establishes connections between them, and creates the standard graphical interface using
Tk. A programmer can edit this script directly.

For example, the following lines of Tcl create the transforms and connections for the
patch from figure 2.

†The explicit namespace osw:: is used to avoid confusion with the Standard Template Library class
vector<T>.

11

AddTransform $patch TimeMachine tm1

AddTransform $patch Sinewave sinewave1 -frequency 440.0

AddTransform $patch Gain gain1 -amp_scale 0.5

AddTransform $patch VSlider freqslider -from 100 -to 800 -step 0.1

AddTransform $patch VSlider ampslider -from 0 -to 1 -step 0.01

AddTransform $patch DAC dac1 -channel /dac/0/0

Connect $patch/tm1/timeOut $patch/sinewave1/timeIn

Connect $patch/sinewave1/samplesOut $patch/gain1/samplesIn

Connect $patch/gain1/samplesOut $patch/dac1/in0

Connect $patch/freqslider/out $patch/sinewave1/frequency

Connect $patch/ampslider/out $patch/gain/amp_scale

In this script, $patch is variable containing the path name of patch being instantiated.
So far, this script does not display anything. (Although two VSlider transforms are
instantiated, the corresponding GUI slider objects have not yet been created). The
remainder of the script contains commands that build the default OSW visual program-
ming interface, displaying the transforms and their connections. This default visual-
ization can be replaced with a panel that contains only the appropriate slider controls
using the following Tcl script:

toplevel .sinewavepanel

scale .sinewavepanel.frequency -from 100 -to 800 -resolution 0.1 \

-orient horizontal \

-command \"oswSet /$patch/sinewave1/frequency\"

scale .sinewavepanel.amplitude -from 0 -to 1 -resolution 0.01 \

-orient horizontal \

-command \"oswSet /$patch/gain1/amp_scale\"

pack .sinewavepanel.frequency .sinewavepanel.amplitude -side top

MakePatchWindow .sinewavepanel

The MakePatchWindow command replaces any default window created for this patch
with the custom window .sinewavepanel. When a user opens this patch, the cus-
tomized interface (shown in figure 13) will replace the original interface of figure 2.

Customizing the user interface of patches is particularly useful for developing stand-
alone applications based on OSW [15].

4 Scheduling

We now turn our attention from the language issues associated with writing programs
in OSW to the scheduling issues associated with running them. This section discusses

12

the real-time constraints imposed on the OSW runtime system as well as the time and
dataflow models in OSW programs before describing the scheduler itself.

4.1 Reactive Real-Time Constraints

OSW is designed for implementing reactive real-time audio and music applications [16].
Reactive real-time involves maintaining output quality while minimizing latency, the
delay between input and output of the system, and jitter, the change in latency over
time [17].

First, we want to maintain continuous audio output quality. If the system falls
behind, it will produce unpleasant clicks and gaps in the audio output. This situation
can be avoided by using large buffers that regulate the output of samples into the device.
However, buffers introduce latency into system. For audio and music applications, we
would like to keep the input-to-output latency under 10ms [18]. We therefore bound the
size of the buffered output to be less than 10ms worth of sound. However, if we allow
the delay be any size less than 10ms, we may introduce jitter into the system. Humans
are very sensitive to jitter [19], especially if it involves the response of sound output
to their own gestures. We therefore process audio in very small chunks (e.g., only 1ms
of sound), and queue no more than 10ms of these small chunks in order to minimize
overall latency while still preventing audio glitches. To minimize jitter, we stipulate
that as soon as there is less than 10ms of sound in the queue, a new small chunk should
be added. Of course, if the particular system can handle a bounded delay of less then
10ms, the lower value should be used.

These real-time distance constraints [20] of bounded delay and minimal jitter are
managed by OSW’s timing model and scheduler.

4.2 Time in OSW

The flow of time in sound and music can be interpreted differently in different situations.
Real time is a quantity that always increases at a fixed rate, as measured by a clock.
Virtual time [21] is a variable-rate quantity that can be scaled or translated. Familiar
examples of virtual time include the changing tempo of music, fast-forward or rewind
functions on a VCR, and changing the speed of a record player.

OSW includes state variables, called clocks, that measure real time in seconds using
double-precision floating-point numbers. Clocks are associated with the time sources
in the computing environment, including the computer clock, audio devices (i.e., sound
cards) and network time sources [22]. A clock is updated at a regular interval, called
a period. Virtual time is handled by transforms called time machines. Time machines
can be synchronized to clocks or other time machines, as illustrated in figure 14. Trans-
forms that implement functions of time (e.g., Sinewave) are typically connected to the
output of time machines. Like Get, time machines have an optional argument -order
that determines their relative order when synchronized to the same clock.

OSW includes a master clock, which can be assigned by the user to any time source.
By default, the master clock is assigned to the primary audio output device. The

13

master clock is used for scheduling delayed activations and as the default clock for time
machines.

Clocks and time machines play a crucial role in maintaining real-time constraints.
Consider the default configuration in which all time machines are synchronized to the
audio output device via the main clock. An audio output device is a transform that has
only state variables but no inlets or outlets and is not part of any patch. However, its
state variables can be accessed using Get or Set. An audio output device accepts samples
from DAC transforms and sends those samples to the actual device. (If more than one
DAC transform sends samples to a device during a period, the samples are mixed.)

Recall from section 4.1 that we bound the latency of our system by bounding the
size of the queued output while at the same time ensuring that the queue is always
full enough to guarantee that we never have discontinuities in the audio output. It is
the job of the audio output device to satisfy these opposing constraints. The audio
output device has two state variables that represent these constraints, SampleBufferSize
and TargetLatency. SampleBufferSize is the number of samples that are sent to the
device at once, and TargetLatency is the total number of samples that are allowed to
be placed in the output queue awaiting realization by the sound hardware. Because
TargetLatency controls overall latency and SampleBufferSize controls jitter, we want both
of these quantities to be as low as allowed by the device and operating system.

In order to fulfill real-time requirements, the audio output device has to be able to
control when the signal processing that produces the samples it will output is performed.
This is accomplished by controlling virtual time sources via the device clock (or the main
clock if it is assigned to this device). The audio output device includes an activation
expression that depends on the clock:

FlushSamples();

while(SamplesInQueue() > TargetLatency) {

Wait();

}

clock = clock + SampleBufferSize / SampleRate;

The Wait operation is system dependent, and may include deferring to another
thread or process to perform other events such as MIDI input. FlushSamples outputs
the samples for this period. (The number of samples output is the sample-buffer size.)

When the clock is updated, it triggers several activation expressions. The queue of
deferred activations has order minint, or the smallest integer allowed, thus assuring that
it will be activated first. Any deferred activations that are scheduled to occur during
this period are then evaluated. The clock then triggers the audio input device, whose
activation has order minint+ 1. The audio input device then reads a period of samples
into a buffer and activates any ADC transforms in the program. All the time machines
are then activated according to their relative ordering (as set by the -order option).
Finally, the clock re-triggers the activation expression of the audio output device, thus
completing the loop. The audio output activation is assigned an order of maxint (the
largest available integer) and will be the last activation triggered by the clock during this
period. By ordering the activations in this manner, we guarantee that in each period we

14

first receive audio input, then perform audio processing that may depend on the input,
and finally send the results to the audio output.

This timing model can be generalized to multiple audio output devices with inde-
pendent clocks, as well as other clock sources.

4.3 Synchronous and Asynchronous Execution

A common type of patch is one in which a transform that produces samples as a function
of virtual time (from a connected time machine) is followed by a succession of transforms
that modify the samples and finally send them to an audio output device. Such a set
of transforms constitute a synchronous chain. Activation expressions in transforms of
a synchronous chain are guaranteed to occur exactly once each period of the clock to
which they are synchronized. Moreover, the order in which they are executed is fixed
within a period. This is true of more general synchronous dataflow graphs, which can
include multiple dataflow paths (e.g., FanOuts) as long as they are synchronized to the
same clock. Most signal processing in OSW occurs within synchronous dataflows.

Each time-domain transform (i.e., a transform that produces samples as a function
of time or input samples, as described in section 3.1) has state variables for its sample
rate and the number of samples that are processed during one period. The sample rate
and buffer size of all transforms in a synchronous dataflow graph must be equal, unless
the graph includes an explicit sample-rate conversion transform [23], in which case the
values must be equal for all transforms before the conversion and for all transforms after
the conversion. The sample rate or vector size can be explicitly set in an audio input
(ADC) or output (DAC) transform. The values are then propagated to all connected
time-domain transforms.

Because OSW allows multiple audio devices and clock sources, several synchronous
dataflow graphs that run at different sample rates and buffer sizes are supported. For
example we may want to use an audio input running at a low sample rate (e.g., 11025Hz)
for pitch detection, and send the resulting pitch values (i.e., as synchronous signals or
asynchronous events) to a synthesizer that generates samples at a higher rate (e.g,
44.1Khz). More generally, some audio channels in a signal-processing application may
be used for transmitting continuous control information instead of sound [24]. Although
the guarantees of synchronicity and fixed order of execution remain true within the
synchronous graphs of individual channels, interaction between graphs requires explicit
synchronization with one clock, usually the master clock. Otherwise, the interaction is
asynchronous and non-deterministic.

Other examples of asynchronous events include input from the user interface or a
MIDI device. Unlike transforms in synchronous chains, the relative execution times of
asynchronous transforms cannot be predicted. If any of the coefficients of a filter are up-
dated asynchronously while the filter is running, the filter may become unstable. Thus,
it is necessary to protect inlets and state variables that are sensitive to asynchronous
updates. Such protection is included in the more general parallel scheduler described in
the next section.

15

4.4 Parallelism

Asynchronous events are a special case of parallelism. In parallel environments, two
or more tasks are executed simultaneously, or at an indeterminate time relative to one
other.

Parallel processing offers greater throughput for computationally intensive tasks (like
signal processing) at the expense of greater hardware cost and software complexity.
However, as processing hardware becomes cheaper and more powerful, computers with
two or more processors are becoming more widely available. OSW is designed to take
advantage of such multi-processor capabilities when they are present. We describe the
parallel scheduling scheme used by OSW, including how to protect sensitive variables
against asynchronous updates and non-determinism in parallel environments.

4.4.1 A Formal Approach

Given enough processors, each transform could run on its own processor, executing
activation expressions whenever its inlets or state variables change. Processor utilization
would be poor. If there are two transforms T1 and T2 such that an outlet of T1 is
connected to an inlet of T2, then T1 must be executed before T2.

Consider all finite sequences of transforms X = T1, T2, . . . , Tn such that T1 is con-
nected to T2, etc. If there exists no transform T such that an outlet of T1, . . . , Tn−1

connects to an inlet of T or an outlet of T connects to an inlet of T2, . . . , Tn, then X is a
chain. More informally, a chain is a sequence of connected transforms in which there are
no branches. We say that X is a maximal chain if there is no chain Y such that X ⊂ Y
(i.e., if we add any more transforms to X, X will no longer be a chain). Each maximal
chain must be scheduled sequentially, while separate maximal chains can run in parallel.
Thus, maximal chains are considered the formal unit of parallel computation in OSW.

Examples of maximal chains that often occur in real programs include processing
several channels of audio, or synthesizers with multiple voices (i.e., polyphony). A
synchronous chain, as described in the previous section, is simply a chain in which T1 is
a time machine or an ADC transform and T2, . . . , Tn are time-domain transforms.

A more general and rigorous analysis of dataflow and related models used in signal
processing is provided by Lee and Parks [25].

4.4.2 The OSW Parallel Scheduler

We now present an algorithm for scheduling maximal chains. Given N processors, we
instantiate N threads for processing the scheduled chains. Each chain-processing thread
executes the following loop ad infinitum:

loop
pop a chain off the queue and execute it.

end loop

The following greedy decision rule is used by a transform after an outlet has just been
assigned to determine whether or not its connections are part of the current maximal

16

chain:

if this transform has more than one outlet then
The transform connected to this outlet begins a new maximal chain.
Add it to the queue and return

else
The next transform is part of the current chain.
Assign the outlet value to the connected inlet and evaluate its activation
expressions. . .

end if

Recall from section 4.2 that audio devices have activation expressions that both trig-
ger and are triggered by a clock when an output device needs more samples. Thus, these
tasks are already scheduled as part of maximal chains. However, there remain necessary
tasks to perform, including scheduling asynchronous events and deferred deallocation of
reference-counted memory. We can insert deferred deallocation in between the execution
of chains:

loop
pop a chain off the queue and execute it.
Do deferred deallocations if no other thread is doing this.

end loop

Only one thread is allowed to perform deallocations at any given time, thus protecting
the common memory pool and also preventing additional processors from being wasted
on memory management.

Alternatively, deferred deallocation can be performed by a separate thread that
runs at lower priority (i.e., is given less processing time) than the chain-processing
threads. Additional threads are needed for handling the user interface as well as some
asynchronous input devices, such as MIDI input ports‡. Although this means there will
be more threads than processors, the asynchronous input threads will likely be idle much
of the time and therefore do not need to be assigned dedicated processors.

4.4.3 Thread-safety and Synchronization

Consider the example of a 2-pole resonant filter transform, with inlets for input samplesIn
and filter coefficients a, b1 and b2. It might contain the following activation expression:

Samples newsamples(NumberOfSamples);

for (int i = 0; i < NumberOfSamples; ++i) {

newsamples[i] = x * samplesIn[i] + b1 * y1 + b2 * y2;

y2 = y1;

y1 = samplesIn[i];

}

samplesOut = newsamples;

‡The need for separate threads for devices depends on the device and the operating system.

17

where y1 and y2 always contain the previous two samples. A transform that is running
in parallel or asynchronously may update the values of a, b1 or b2 while the activation
expression is running. This will cause unpredictable and often disastrous results in the
output sound (including loud clicks or saturation if the filter becomes unstable). We
want to be able to guarantee that the values of the filter coefficients remain constant
during the evaluation of the expression. More generally, we want activation expressions
to be thread-safe, i.e., the evaluation of an expression on one thread will not be corrupted
by the asynchronous actions of other threads [26].

To this end, OSW provides methods for locking sensitive variables [27] [28]. When
a variable is locked, any attempts to assign it a new value will be deferred by placing
the new value in a buffer and then copying the value from the buffer to the variable as
soon as it is unlocked. This technique is called double-buffering. The filter expression
can now be protected as follows:

Samples newsamples(NumberOfSamples);

a.Lock();

b1.Lock();

b2.Lock();

for (int i = 0; i < NumberOfSamples; ++i) {

newsamples[i] = x * samplesIn[i] + b1 * y1 + b2 * y2;

y2 = y1;

y1 = samplesIn[i];

}

a.Unlock();

b1.Unlock();

b2.Unlock();

samplesOut = newsamples;

Any attempts to assign new values to the filter coefficients during the loop will
be double-buffered and assigned to the variables when they are unlocked. If multiple
assignments to the variables occur while they are locked, the most recent values are
assigned and other assignments are discarded.

It should be noted that because vectors (like samplesIn) are stored as referenced-
counted pointers, the copying operation requires only the pointer to be copied, not
the entire vector. Thus, vector variables can also be efficiently protected using double-
buffering.

5 OSW in Networked Environments

Most computers can operate in networked environments using such standards as Internet
protocols, Ethernet, USB and 1394 FireWire. Computer networks are now used regularly
for audio broadcast and have been used to control multiple computers in live interactive
musical performances [29] [30].

Since OSW is being developed in the era of ubiquitous networking, its design incor-
porates features for networking technologies and environments

18

5.1 OpenSound Control

OpenSound Control (OSC) is a new protocol for high-level, expressive control of sound
synthesis and other multimedia applications [31]. OSC divides the world into clients
that generate control messages and servers that produce sound in response to these
messages. Because OSC messages use a hierarchical addressing scheme that is similar
to the OSW hierarchical name space, OSW is a “natural” server for OSC. OSW contin-
uously monitors network connections selected by the user (e.g., a particular UDP port)
and waits for incoming messages. If the address of an incoming message corresponds to
an inlet, outlet or state variable in the OSW name space, the message is sent to that
variable. If the message is a query for information about the variable, OSW returns
the type, description and value of the variable. If it is a control message, then the data
associated with the message is assigned to the variable. For example, an OSC client
could remotely set the frequency of the sinewaveplayer patch to middle C by sending the
message:

/sinewaveplayer1/sinewave1/frequency 261.626

If an incoming OSC message does not match any variable in the OSW namespace,
a string for the address and the raw binary representation of the data are sent to any
OSCReceive transforms in the program. If there are no running OSCReceive transforms,
then the message is discarded.

5.2 Distributed Namespace

If a reference to a named OSW object (e.g., a variable name in a Get or Set transform) be-
gins with two slashes (“//”), then it is considered to be an IP address on a network. For
example, the path name //myserver.cnmat.berkeley.edu/mypatch/sinewave1/frequency refers
to the frequency inlet of a Sinewave transform in a patch running on the machine
myserver. Over IP networks, the remote machine specification also includes a port
number after the machine name separated with a colon (e.g., //myserver:7777/. . .). If
no port number is included, a default port is assumed. Requests to query or assign values
to variables on other machines are performed using OSC messages. The network-aware
name space can be used to build distributed OSW applications on local networks.

5.3 SDIF

The Sound Description Interchange Format (SDIF) is a new standard for storing and dis-
tributing sounds in different representations, including time-domain samples, frequency-
domain spectra and other higher-level models. SDIF arranges data into sequences of
data, called streams. A stream is time-ordered sequence of data structures, called frames
that describe a sound using a particular representation. Each frame is associated with a
frame type indicating the type of sound representation being used. The SDIF standard
includes an extensible library of frame types. Interested readers are encouraged to find
more about the SDIF specification, the currently supported sound representations and
the applications that use SDIF [7].

19

OSW includes transforms and data types for manipulating SDIF streams and frames,
including separate data types for the standard SDIF frame types, translating between
SDIF frames and OSW vector and list types, and reading and writing of SDIF streams
on local disks or networks.

5.4 Downloading Patches and Transforms

As described in section 3.3, OSW patches are Tcl scripts. Popular web browsers can
download and execute Tcl scripts via a plug-in [32]. These scripts are also allowed to
load dynamic libraries, provided that the user has deemed them “safe” and granted
permission to run them on his or her computer.

We propose the use of OSW patches as platform for generalized “downloadable in-
struments” on the World Wide Web. For example, a user could select the sinewaveplayer
patch from a server. The patch is downloaded and interpreted by the Tcl plug-in,
which dynamically loads the OSW run-time environment and necessary transforms, and
renders the custom user interface in the web browser.

Downloadable patches and SDIF can be used together to create customizable stream-
ing audio players for different sound representations [33].

6 Discussion

We have implemented and tested OSW on Intel-based PC’s running the Windows NT
and 98 operating systems. We are currently porting OSW to the Linux operating system,
Macintosh computers running MacOS and SGI workstations.

Most transforms and patches that do not access platform-specific functions (e.g.,
accessing hardware) can run on each platform without modification. Of course, C++
source code for each transform must be recompiled. Further work will evaluate different
compilers as “back-ends” for the Externalizer. In particular, we require ANSI/ISO C++
compatibility [34] and aggressive optimization.

In addition to the language and scheduling issues described in this paper, an impor-
tant part of this project is its use by sound designers and musicians. OSW has been
used successfully in live musical performance situations [35]. We hope that its continued
use in creative applications will drive continued work on fundamental system issues and
also stimulate the development of high-level transforms that realize new ideas for audio
processing and expressive control of sound.

7 Acknowledgements

We gratefully acknowledge the NSF Graduate Research Fellowship Program for their
support of this research. We would also like to thank David Wessel and Lawrence
A. Rowe, directors of CNMAT and the Berkeley Multimedia Research Center, respec-
tively, for their support; and Roger Dannenberg from the School of Computer Science
at Carnegie Mellon University for his constructive feedback.

20

References

[1] D. Zicarelli. “An Extensible Real-Time Signal Processing Environment for Max”.
International Computer Music Conference, pages 463–466, Ann Arbor, MI, 1998.
ICMA.

[2] B. W. Kernighan and D. M. Ritchie. The C Programming Language, Second Edi-
tion. PTR Prentice Hall, Englewood Cliffs, NJ, 1988.

[3] M. Puckette. “Pure Data: Another Integrated Computer Music Environment”. Sec-
ond Intercollege Computer Music Concerts, pages 37–41, Tachikawa, Japan, 1996.

[4] J. Davis et al. “Heterogeneous Concurrent Modeling and Design in Java”. Technical
Report UCB/ERL M98/72, EECS, University of California, November 23, 1998
1998. http://ptolemy.eecs.berkeley.edu.

[5] http://www.cnmat.berkeley.edu/OSW.

[6] http://www.w3.org/XML/.

[7] M. Wright, A. Chaudhary, A. Freed, S. Khoury, and D. Wessel. “Audio Applications
of the Sound Description Interchange Format Standard”. 107th AES Convention,
New York, 1999. http://www.cnmat.berkeley.edu/SDIF.

[8] E. W. Dijkstra. “Go To Statement Considered Harmful”. Communications of the
ACM, 11(8):538, 1968.

[9] D. Knuth. “Structured Programming with Go To Statements”. Computing Surveys,
6:261–301, 1974.

[10] M. Wright, D. Wessel, and A. Freed. “New Musical Control Structures
from Standard Gestural Controllers”. ICMC, Thessaloniki, Greece, 1997.
http://cnmat.cnmat.berkeley.edu/ICMC97/GesturalControl.html.

[11] B. B. Welch. Practical programming in Tcl & Tk. Prentice Hall PTR, Upper Saddle
River, NJ, 2nd edition, 1997.

[12] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, Mass.,
3rd edition, 1997.

[13] A. Freed and A. Chaudhary. “Music Programming with the new Features of Stan-
dard C++”. International Computer Music Conference, pages 244–247, Ann Arbor,
MI, 1998.

[14] T. Veldhuizen. “Scientific Computing: C++ Versus Fortran”. Dr. Dobb’s Journal,
22(11):34, 36–8, 91, 1997.

[15] A. Chaudhary. “Band-limited Simulation of Analog Synthesizer Modules by Addi-
tive Synthesis”. 105th AES Convention, San Francisco, CA, 1998.

21

[16] R. Dannenberg and D. Jameson. “Real-Time Issues in Computer Music”. Proceed-
ings of the Real-Time Systems Symposium, pages 258–261. IEEE Computer Society
Press, 1993.

[17] E. Brandt and R. Dannenberg. “Low-Latency Music Software Using Off-the-Shelf
Operating Systems”. International Computer Music Conference, pages 137–140,
Ann Arbor, MI, 1998. ICMA.

[18] E. Clarke. “Rhythm and Timing in Music”. Diana Deutsch, editor, The Psychology
of Music, pages 473–500. Academic Press, San Diego, 1999.

[19] M. Tsuzaki and R. D. Patterson. “Jitter Detection: A Brief Review and Some
New Experiments”. A. Palmer, R. Summerfield, R. Meddis, and A. Rees, editors,
Proceedings of the Symposium on Hearing, Grantham, UK, 1997.

[20] C. Han, K. Lin, and C. Hou. “Distance-Constrained Scheduling and Its Applications
to Real-Time Systems”. Communications of the ACM, 45(7):814–826, 1996.

[21] R. Dannenberg. “Real-Time Scheduling and Computer Accompaniment”. Max
Matthews and John Pierce, editors, Current Research in Computer Music. MIT
Press, Cambridge, MA, 1989.

[22] D. Mills. “Simple Network Time Protocol (SNTP) Version 4 for
Ipv4, Ipv6 and OSI”. Technical Report Internet RFC 2030, 1996.
http://sunsite.auc.dk/RFC/rfc2030.html.

[23] Y. Medan and U. Shvadron. “Asynchronous rate conversion”. Y. Wang, A. R.
Reibman, B. H. Juang, T. Chen, and S. Y. Kung, editors, Proceedings of First
Signal Processing Society Workshop on Multimedia Signal Processing, pages 107–
12, Princeton, NJ, USA, 1997. IEEE.

[24] A. Freed and D. Wessel. “Communication of Musical Gesture us-
ing the AES/EBU Digital Audio Standard”. International Com-
puter Music Conference, Ann Arbor, Michigan, 1998. ICMA.
http://cnmat.cnmat.berkeley.edu/ICMC98/papers-html/AESGesture.html.

[25] E. A. Lee and T. M. Parks. “Dataflow Process Networks”. Proceedings of the IEEE,
83(5):773–799, 1995.

[26] S. Ignatchenko. “STL Implementations and Thread Safety”. C++ Report, 10(7),
1998.

[27] J. Richter. Advanced Windows. Microsoft Press, Redmond, WA, 1995.

[28] M. Ben-Ari. Principles of Concurrent Programming. Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1982.

[29] D. Wessel, M. Wright, and S. A. Khan. “Preparation for Improvised Performance
in Collaboration with a Khyal Singer”. International Computer Music Conference,
Ann Arbor, Michigan, 1998. International Computer Music Association.

22

[30] K. Makan. “Broken Thoughts”, 1999. Live performance at
CNMAT/CCRMA/CARTAH Spring 1999 Concert Exchange. Center for New
Music and Audio Technologies, Berkeley, CA.

[31] M. Wright. “Implementation and Performance Issues with OpenSound Con-
trol”. International Computer Music Conference, Ann Arbor, MI, 1998. ICMA.
http://www.cnmat.berkeley.edu/OpenSoundControl.

[32] http://www.scriptics.com.

[33] M. Wright, S. Khoury, R. Wang, and D. Zicarelli. “Supporting the Sound Descrip-
tion Interchange Format in the Max/MSP Environment”. ICMC, Beijing, 1999.

[34] A. Stevens. “A C++Standard At Last”. Dr. Dobb’s Journal, 23(2):115–17, 130–1,
1998.

[35] A. Chaudhary. “Spin Cycle / Control Freak”, 1999. Live performance at CN-
MAT/CCRMA Spring 1999 Concert Exchange. Center for New Music and Audio
Technologies, Berkeley, CA, May 15 1999.

23

Figure 1: A sine wave transform

Figure 2: A patch that plays a pure tone with varying frequency and amplitude

24

Figure 3: Active and passive inlets. a) A multiplication operator. b) The right inlet is
passive, so changing its value does not cause any output. c) The left inlet is active, so
the operator outputs the product of the two inlets.

25

Figure 4: A patch that plays a pure tone using a wave table

26

Figure 5: A patch that uses a custom wavetable stored locally in the patch. Tables can
be loaded from files or hand-drawn.

27

Figure 6: Using Get and Set to transfer data between patches.

Figure 7: The multiplication operator on left returns the product of an integer and a
floating-point number as a floating-point number. The operator on the right returns the
product of samples and a floating-point number as samples.

28

Figure 8: Mixing three sine-wave oscillators.

29

Figure 9: Same as figure 8, but using bundles and transform arrays.

30

Figure 10: The Externalizer lists the variables and activation expressions for the Gain
transform.

31

Figure 11: The activation expression of Gain. Incoming samples are multiplied by
amp scale.

Figure 12: The activation expression is modified to measure amp scale in decibels instead
of a linear scale.

32

Figure 13: A customized interface for the simple oscillator patch in figure 2.

33

Figure 14: Fun with time machines. Both oscillators are set to the same frequency.
However, the time machine driving fast is running 1.5 times faster than the the time
machine driving slow. The oscillators will sound a perfect fifth apart.

34

