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Online Audio Examples

http://www.ptank.com/phdtalk/sounds.html

Supplemental audio material 
for online PDF and PowerPoint Slides

(Arranged by slide #)
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Collaboration with CNMAT

• Center for New 
Music and Audio 
Technologies

• Interdisciplinary
– Music
– EECS
– Psychology

• Both research and 
artistic activities
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Outline

• Overview of sound synthesis
– Synthesis Servers
– Additive synthesis and resonance modeling

• Computational Issues and Problems
• Perceptual Scheduling
• Computational Reduction Strategies
• Evaluation on Musical Examples
• Conclusions & Future Work
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Playing Music on Computers

• Streaming Audio Servers
– Internet Radio
– Napster
– Playing audio CDs on your computer

ServerSound
Samples

Client

Audio Output

• All the system you need…if all you play is the stereo!
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Synthesis Servers

Synthesis Server

Independent of hardware, OS and transport

Clients

Sound
models

Audio Output

MIDI / Open Sound Control
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What is a “Sound Model?”

• Waveform representation of sound:
– a sequence of samples y(n)

• Synthesize sound from parametric models
– Example: a pure tone (i.e., “sine wave”)

y(n) = A(n) sin (f(n) + φ(n))

• Advantages of a sound model
– Mutability (i.e., any pitch or amplitude)
– Compression

• Example: A sine wave synthesis server
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Sinusoidal Models

• Sum of time-varying sinusoids:

( ) ( ) ( ) ( )( )ttttAtx ii

N

i
i φω += ∑

=

cos
1

Time  t  (s)

Amplitude A i(t) (dB)

frequency ωι(t)  (log Hz)

Phase is not shown
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Sinusoidal Models

• Sum of time-varying sinusoids:
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• Advantages:
– Independent control of time and frequency
– Control of timbre

• Disadvantages:
– Large and expensive to compute
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Resonance Models

• Exponentially-decaying sinusoids:
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Resonance Models

• Exponentially-decaying sinusoids:
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• Advantages:
– Independent control of time and frequency
– Perceptually meaningful control of timbre
– Small (a few hundred numbers for entire sound)

• Disadvantages:
– Expensive to compute



4/18/2001 12

Open Sound World

• Language for synthesis servers
• Visual dataflow language
• Incremental development
• Transforms are connected to 

form patches
• Modern type system
• Nested patches
• Hierarchical name space
• Extensible set of transforms and 

data types
• Profiling Features
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Synthesis Server Execution

Audio output buffer

Target Latency (10ms)
Audio Output 

Transform

• Maintain quality of service (QoS): audio continuity, bounded latency & jitter (10 ±1ms)
• Audio output every period T (For simplicity, T = 1 / sampling rate)
• Output samples
• Advance clock by T
• Execute patch
• Wait for output buffer to reach target latency, and repeat process

Advance clock by T
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Missed QoS Guarantees

• The per-sample execution time of the patch must be less than T          
(20 µs/sample at 44.1kHz)

• If execution time is greater, the buffer will underflow (audible clicks)
• Increasing buffer size to avoid underflow increases latency

Audio output buffer

Target Latency (10ms)
Audio Output 

Transform

Advance clock by T
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What can we do in 20µs?

• Measured performance of sinusoidal-modeling algorithm

OSW AddByIFFT performance (Intel PII 400Mhz, Linux)
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What can we do in 20µs?

• Measured performance of resonance-modeling algorithm

OSW Resonators performance (Intel PII 400Mhz, Linux)
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Is this enough?

• Adequate for most 
individual models

• Multiple models
– Polyphony
– Multiple audio 

channels
– Directional acoustics

80 sinusoids

12 x 80 = 960 sinusoids

+ 8x channel overhead

• 96kHz Audio
– Under 10 µs per sample
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Perceptual Scheduling

• Detect potential QoS failures
• Provide feedback to transforms
• Transforms voluntarily reduce computation using 

measures of perceptual salience

Perceptual Scheduler

Audio output buffer

Target Latency (10ms)
Audio Output 

Transform

Advance clock by T
feedback
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Analogy: Hybrid Cars

• Maintain QoS
– Velocity

• Limited bandwidth
– Smaller engine
– Less power

• Dynamic adaptation
– Electric motor assist
– Regenerative breaking
– Electric only at slow 

speed

http://www.howstuffworks.com/hybrid-car.htm
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Perceptual Scheduling Details

Given execution time E, target execution time Emax and 
reducible transform set R:

1. For each transform r ∈ R, calculate c(r), the time 
saved by reducing r using an appropriate measure 
of perceptual salience

2. Find R' ⊆ R such that 

3. Reduce computation of each transform in R' 

max)( ErcE
Rr

≤− ∑
∈

A reducible transform requires a reduction strategy and 
measure of perceptual salience
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Reduction Strategies

• Reduce the number of 
sinusoids in a model

• Graceful degradation by 
removing weakest 
sinusoids

• Amplitude threshold
• Masking
• Strategies also used for 

Resonance Models

Frequency (Hz)
A

m
pl

itu
de
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Listening Experiments (I)

• Measure effectiveness of reduction strategies
– Perceived quality (1 thru 5) vs. model size.

• Summer and Fall, 2000
• Three sinusoidal models

– Suling flute, berimbao, James Brown

• Three resonance models
– Marimba, string bass, tam-tam

• Compare reduced and original versions
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Suling Sinusoidal Model

150 75 38 19 9 3

Comparison of Strategies (Suling)
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Marimba Resonance Model

48 25 13 7 5 2
Comparison of Strategies (Marimba)
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Discussion

• Quality can be preserved in reduced models
• Little difference between amplitude and masking 

strategies
– Few partials are masked
– Remaining masked partials have low amplitude
– Amplitude strategy is less computationally expensive!

• Prune partials by amplitude
– In many models (e.g., suling, marimba), a few partials 

contribute most of the energy
– Keep enough partials to maintain 75% of the original energy
– For resonance models, integrate amplitude over time
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Listening Experiments (II)

• Measure effectiveness of reduction 
strategies within perceptual scheduling 
framework
– Perceived quality (1 thru 5) vs. average 

CPU time.

• Larger musical examples
• February-March, 2001
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Results: Constellation
(Glockenspiel and Vibes)
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Results: Constellation
(Glockenspiel and Vibes)

Constellation (Glock & Vibe) - Quality vs. CPU usage
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Results: Tibetan Singing
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Results: Tibetan Singing

"Tibetan Recording" Improvisation: Quality vs. CPU usage

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16

Mean CPU usage (us/sample)

L
is

te
n

er
 S

co
re

s

Mean CPU Time (µs/sample)

Li
st

en
er

 S
co

re

Original Reduction Reduction



4/18/2001 31

Results: Bach Fugue (bwv 867)

Original Reduction
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Results: Bach Fugue (bwv 867)

Bach Fugue 22 - Quality vs. CPU usage
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“Antony 2001”

• David Wessel, 1977
– 4A Digital oscillator bank [DiGiugno, 1976]

• Algorithmically generated sinusoidal models
– Random-frequency partials within moving frequency bands
– Performer changes the frequency bands in real time
– 3 voices with 200 partials each and independent band 

controls

• Little or no computation was saved using sinusoidal-
model reduction strategy

• Custom reduction strategy was developed
– Number of partials proportional to bandwidth
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Results: Antony
Original Reduction Reduction
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Results: Antony

Antony: Quality vs CPU usage
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Conclusions

• QoS failures can be averted 
dynamically and gracefully by targeted 
reductions in the computation used by 
synthesis algorithms

However…
• Care must be taken in choosing the 

right reduction strategy for a particular 
model.
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Conclusions

• Best results when additional knowledge 
about models is available.
– Algorithmically generated models
– Resonance models
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Future Research Directions

• Develop additional reduction strategies
– E.g., strategy for vocal models

• Automatic selection of best reduction 
strategy
– Machine learning (neural nets, graphical models)

• Other applications
– Granular synthesis
– Pitch detection
– Video processing



4/18/2001 39

Acknowledgements

• Dissertation Committee
– Lawrence A. Rowe, Co-Chair
– David Wessel, Co-Chair
– John Wawrzynek
– Ervin Hafter

• Research Colleagues
– Adrian Freed
– Matthew Wright
– Richard Andrews

• Musical Credits
– David Wessel
– Ronald Bruce Smith
– Timothy Madden
– Tsering Wangmo
– Leah Fritz

• Funding
– NSF Graduate Research Fellowship Program
– Gibson Music, Inc



4/18/2001 40

Finis



4/18/2001 41

Models from Analysis

Frequency SpectrumSampled Waveform Sinusoidal Model

• Convert samples for frequency spectra

• Select peaks in spectra
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Results: Constellation (Marimba)

Constellation (Marimba) - Quality vs. CPU usage
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Sinusoidal model of James Brown 
and “The Original J.B.’s” (1970)
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